### Welcome to the



We'll be starting our evening together at 5:00.

**Technical issues?** Please call or email:

**UMWA@MerrimackRiver.org** 

603.796.2615

# UPPER MERRIMACK WATERSHED ASSOCIATION

PO Box 3019 Penacook NH 03303 MerrimackRiver.org

# Housekeeping

1. Click "Chat" on banner at bottom screen



2. Type name and organization (chat box at lower right corner of screen)





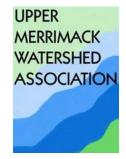
3. Use chat to ask questions during intro presentation...group discussion at end of presentation

# Agenda

- **1. Welcome** (Michele L. Tremblay, UMWA President)
- 2. Who is UMWA, how is this project supported, why a *Turkey River Watershed Restoration and Management Plan*?

  (Michele Tremblay)
- 3. Project Team Introductions (Michele Tremblay)
- **4. What is Watershed-Based Plan?** (Jeff Marcoux, Watershed Supervisor, Watershed Management Bureau, NHDES)
- 5. Turkey River Watershed Restoration and Management Plan: A Guided Tour (Bob Hartzel, CEI)
- **6. Next Steps** (Michele Tremblay)
- **7. Comments and questions** (Everyone)




# **UMWA?**

- Created in 2016 as a nonprofit
- Manages the Upper Merrimack Monitoring Program
- Works closely with the Upper Merrimack River Local Advisory formed in 1990
- UMMP data catalyzed the Turkey River Watershed Restoration and Management Plan project with funding from DES, communities, and members

# UPPER MERRIMACK WATERSHED ASSOCIATION

P0 Box 3019 Penacook NH 03303 MerrimackRiver.org

### Plan Début: August 25, 2021









Funding for this project was provided by the Upper Merrimack Watershed Association and a Watershed Assistance Grant from the NH Department of Environmental Services with Clean Water Act Section 319 funds from the U.S. Environmental Protection Agency.



# What is a Watershed Based Plan?

- **✓** Identify and quantify pollutant sources
- **✓** Determine potential solutions
- **✓** Develop plan to implement
- **✓** Develop plan to reassess

A "9-element plan" is required by EPA for all s.319-funded watershed projects

### **Element A:**

Identify *causes and sources* that need to be controlled to achieve necessary pollutant load reductions.





# **Element B:**

Determine *pollutant load reductions* needed to meet water quality goals







# **Element C:**

Develop *management measures* to achieve water quality goals.

# **BMPs = Best Management Practices**









# **Element D:**

Estimate the *technical and financial assistance* needed to implement the plan.





# **Element E:**

**Public Information and Education** 





**Element F:** Implementation Schedule

**Element G:** Interim Measureable Milestones





**Element H:** Criteria to measure progress

**Element I:** Monitoring







### Figure 1-1 CONCORD **Delineated Subwatersheds** HOPKINTON **Turkey River Watershed** Legend TURLCONECO2 Whittier Pond Sample Station Little 🕝 Turkey Pond √ Stream, River **Turkey River** Lake, Pond, Reservoir [\_\_\_\_] Town Boundaries TURLCONEC01 mainstem segment TURLCOND ( SubWatershed Ash Brook NH504L OTURBCOND Turkey PEMBROKE Bela Brook Pond Boutwell Mill Brook Bow Brook One Stack Brook 2062-001 Turee Brook Turee Pond Turkey Pond/ Little Turkey Pond **PEMBROKE** Pond Turkey River TURBOW2 TURBOWD TURBOWI O TURBOWES Bow Town Pond TURBOW1B O TURBOW1A UPPER MERRIMACK WATERSHED **ASSOCIATION DUNBARTON** BOW Prepared by: WEARE Comprehensive Environmental Incorporated




# **Turkey River Water Quality Data**



### Figure 1-1 Delineated Subwatersheds

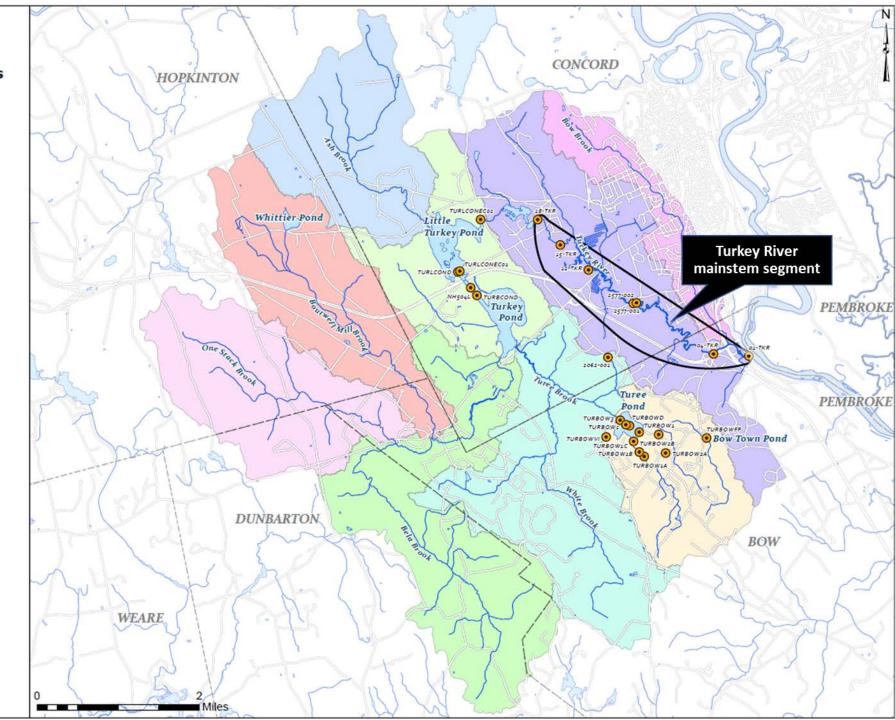
### **Turkey River Watershed**

### Legend

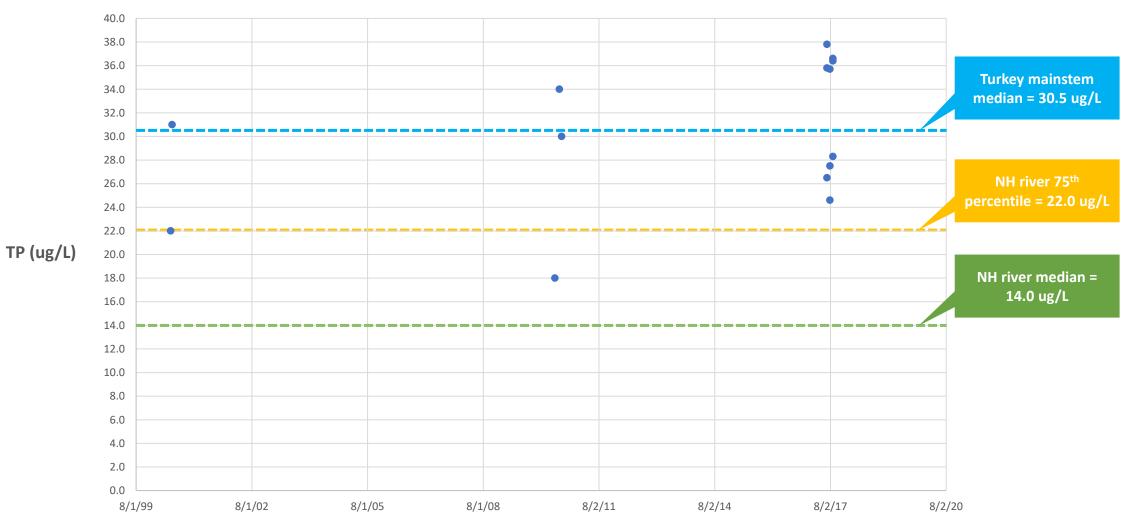




Turkey Pond/ Little Turkey Pond

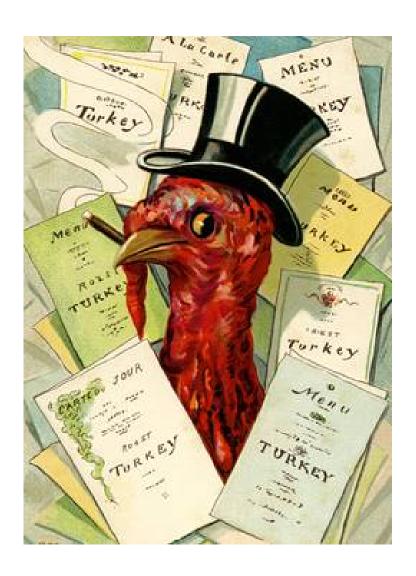

One Stack Brook

Turee Brook
Turee Pond




Prepared by:





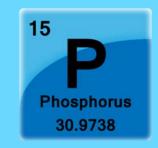

### **Turkey River Mainstem Segment, Total Phosphorus (1996-2017)**

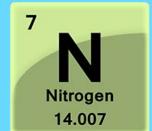




# **Water Quality Goal**



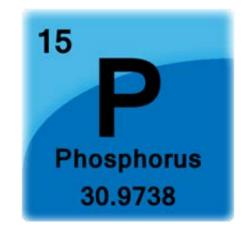




# **NH Standards**

- NH has numeric nutrient criteria for lakes, but not for rivers.
- NHDES is currently in the process of developing numeric nutrient criteria, which is expected to take several years.

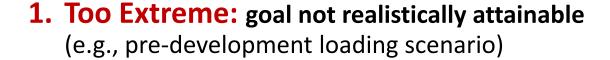
# **NH Water Quality Standards for Class B Waters:**

"Class B waters shall contain no **phosphorus or nitrogen** in such concentrations that would impair any existing or designated uses, unless naturally occurring."






# Water Quality Goal


Water quality goals often focus on the **limiting nutrient...**typically phosphorus in freshwater systems.

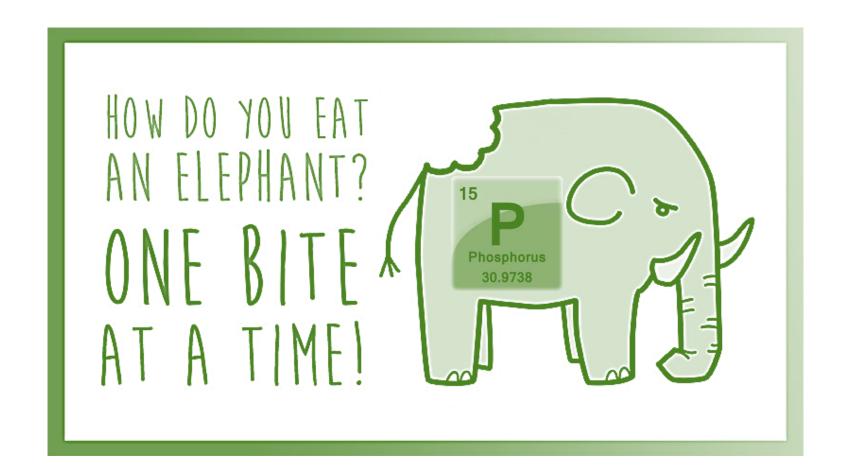
> Turkey River water quality goal is based on total phosphorus (TP)



# **Setting Water Quality Targets**

# The Goldilocks Dilemma






- > should consider both *current conditions* and *future buildout*
- 3. Just Right: goal is both realistically attainable and will achieve WQ objectives



# Potential Total Phosphorus TP) Goals for the Turkey River

|  | TP Goal | % Reduction from<br>Mainstem Median<br>TP (30.5 ug/L) | % Reduction from<br>Predicted Mainstem<br>TP <u>at Buildout</u><br>(39.3 ug/L) | Discussion                                                                                                                                                                                               |
|--|---------|-------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | 30 ug/L | 1.6%                                                  | 23.7%                                                                          | This goal would focus on staying below the TP threshold discussed by NHDES as a potential state standard for rivers. Requires significant ongoing effort to achieve 23.7% reduction at buildout.         |
|  | 27 ug/L | 11.5%                                                 | 31.3 %                                                                         | Vermont Class B(2) WWMG standard is a challenging goal – particularly as watershed continues to develop. If achieved, it <b>would provide 10% AC</b> if 30 ug/L adopted as New Hampshire river standard. |
|  | 21 ug/L | 31.1%                                                 | 46.6 %                                                                         | Vermont Class B(1) WWMG standard is a very aggressive goal. This goal may be challenging to achieve and maintain, particularly as the watershed continues to develop.                                    |
|  | 18 ug/L | 41.0%                                                 | 54.2 %                                                                         | Vermont Class A(1) WWMG standard is <b>may be unrealistic</b> to achieve for the Turkey River mainstem, given current/projected development.                                                             |





# **Nutrient Load Modeling**

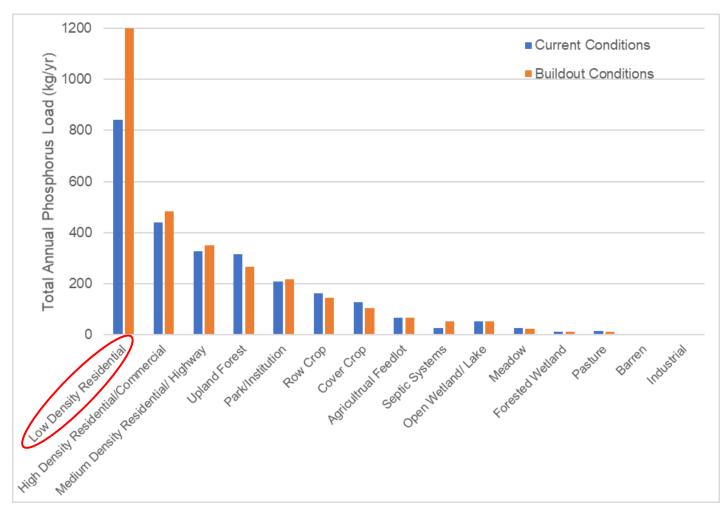



Figure 5. Estimated Total Annual Phosphorus Load from Land Uses

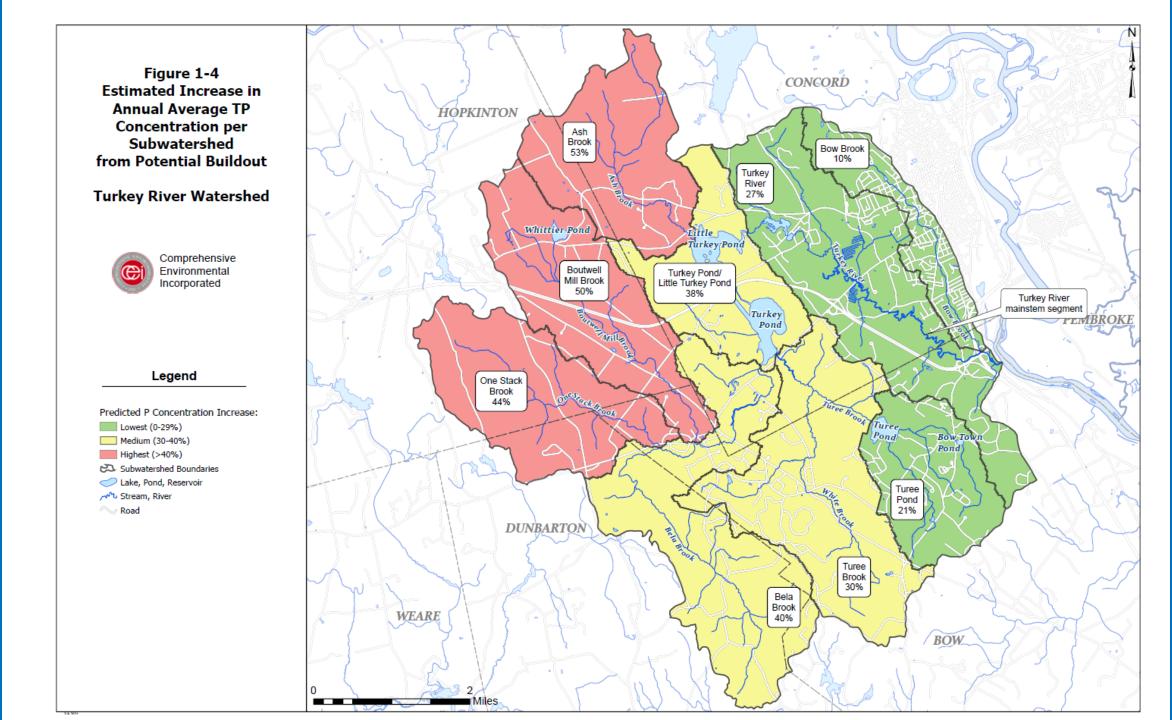



Table 14. Estimated calibrated TP loading by subwatershed (existing conditions and potential buildout conditions)

|                        | Area<br>(ha) | Discharge<br>(hm³/y) | Exist               | ing Cond              | itions                |                  | ential Buik<br>Conditions | Estimated Percent<br>Increase |                     |                   |                    |
|------------------------|--------------|----------------------|---------------------|-----------------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------|-------------------|--------------------|
| Subwatershed           |              |                      | Urban<br>LU<br>(ha) | TP<br>Load<br>(kg/yr) | TP<br>Conc.<br>(µg/L) | Urban<br>LU (ha) | TP Load<br>(kg/yr)        | TP<br>Conc.<br>(µg/L)         | Urban<br>LU<br>(ha) | TP<br>Load<br>(%) | TP<br>Conc.<br>(%) |
| Bow Brook              | 459.1        | 0.25                 | 315.2               | 357.3                 | 143.2                 | 352.9            | 388.7                     | 157.0                         | 12%                 | 9%                | 10%                |
| Turee Pond             | 712.9        | 0.37                 | 220.7               | 178.0                 | 47.7                  | 279              | 213.3                     | 57.5                          | 26%                 | 20%               | 21%                |
| Turkey River           | 1580.2       | 5.24                 | 462.2               | 1629.4                | 31.0                  | 598.7            | 2037.7                    | 39.3                          | 30%                 | 25%               | 27%                |
| Turee Brook            | 1462.0       | 1.17                 | 309.7               | 366.9                 | 31.5                  | 473.1            | 473.1                     | 41.1                          | 53%                 | 29%               | 30%                |
| Turkey Ponds           | 818.8        | 4.15                 | 75.4                | 831.7                 | 20.1                  | 130              | 1137.3                    | 27.7                          | 72%                 | 37%               | 38%                |
| Bela Brook             | 1517.2       | 1.99                 | 210.5               | 492.7                 | 24.7                  | 321.3            | 683.8                     | 34.6                          | 53%                 | 39%               | 40%                |
| One Stack Brook        | 1086.0       | 0.59                 | 104.1               | 149.5                 | 25.3                  | 228.2            | 212.9                     | 36.4                          | 119%                | 42%               | 44%                |
| Boutwell Mill<br>Brook | 1075.4       | 0.58                 | 182.1               | 193.7                 | 33.5                  | 348.4            | 287.1                     | 50.3                          | 91%                 | 48%               | 50%                |
| Ash Brook              | 983.5        | 0.55                 | 94.1                | 197.6                 | 36.3                  | 255.5            | 297.0                     | 55.3                          | 172%                | 50%               | 53%                |

### Notes:

- 1. Time period is 2000-2017.
- 2. Load and concentration predictions include Septic System (27.6 kg/yr) predictions for Total Phosphorus
- Urban Land Use (LU) is comprised of low density residential, medium density residential/ highway, high density residential/ commercial, industrial and parks/ institutions.


| <ol> <li>Pre</li> </ol> | edicted | TΡ | Concentration | Increase: |
|-------------------------|---------|----|---------------|-----------|
|-------------------------|---------|----|---------------|-----------|



Medium (30-40%)

Highest (>40%)







# **Watershed Management**

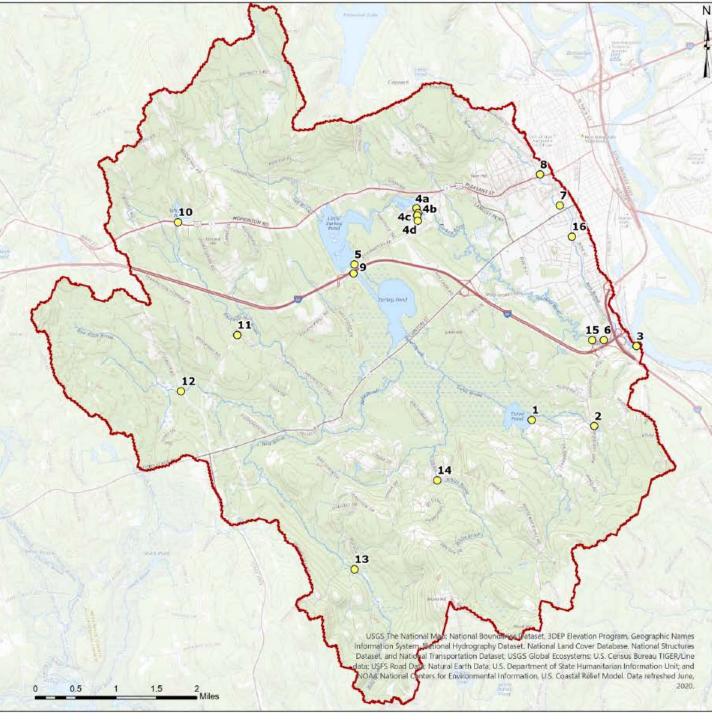




- Desktop/GIS Evaluation
- Preliminary Field Screening
  - > Thank you UMWA volunteers and project partners!
- **Field Investigation** High Priority Locations



# Figure 7 Potential Structural BMP Locations in the Turkey River Watershed




### Legend

O BMPs

Watershed Boundary

| Site | Coordinates           | Location                                                                                     |  |  |  |  |  |  |
|------|-----------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1    | 43.155968, -71.550860 | Turee Pond Boat Launch on Falcon Way                                                         |  |  |  |  |  |  |
| 2    | 43.154876, •71.535516 | Bow Parks & Rec Dept. Building Parking Lot                                                   |  |  |  |  |  |  |
| 3    | 43.169089, -71.525098 | Grappone Toyota Service Center; Rte. 3A near<br>Turkey River confluence with Merrimack River |  |  |  |  |  |  |
| 4a   | 43.193918, -71.578870 |                                                                                              |  |  |  |  |  |  |
| 4b   | 43.193034, -71.578479 | 0.00.0000000000000000000000000000000000                                                      |  |  |  |  |  |  |
| 4c   | 43.192602, -71.578723 | St Paul's School, Sites 4a-4d                                                                |  |  |  |  |  |  |
| 4d   | 43.191634, -71.578592 | 1                                                                                            |  |  |  |  |  |  |
| 5    | 43.183819, -71.594177 | Turkey Ponds Boat House                                                                      |  |  |  |  |  |  |
| 6    | 43.170172, -71.533145 | Hampton Inn Parking Lot                                                                      |  |  |  |  |  |  |
| 7    | 43.194370, -71.543858 | Concord District Courthouse                                                                  |  |  |  |  |  |  |
| 8    | 43.199953, -71.548721 | Concord High School Parking Lot                                                              |  |  |  |  |  |  |
| 9    | 43.182199, -71.594389 | Pedestrian Bridge over Little Turkey<br>Pond, (adjacent to I-89)                             |  |  |  |  |  |  |
| 10   | 43.191426, -71.637496 | Whittier Pond                                                                                |  |  |  |  |  |  |
| 11   | 43.171142, -71.622934 | Boutwell Mill Brook at Farrington Corner Road<br>(near Brockway Road)                        |  |  |  |  |  |  |
| 12   | 43.161189, -71.636776 | One Stack Brook at Jewett Road                                                               |  |  |  |  |  |  |
| 13   | 43.129170, -71.594207 | Bela Brook at Grapevine Road                                                                 |  |  |  |  |  |  |
| 14   | 43.145162, -71.573864 | White Brook at Page Road                                                                     |  |  |  |  |  |  |
| 15   | 43.170155, -71.535991 | Turkey River near Chen Yang Li Restaurant                                                    |  |  |  |  |  |  |
| 16   | 43,188773, -71,540925 | Abbot Downing School                                                                         |  |  |  |  |  |  |



# **BMP Scoring Criteria**

| Factor                                    |                             | Criteria                         | Score                        |     |        |      |  |  |  |
|-------------------------------------------|-----------------------------|----------------------------------|------------------------------|-----|--------|------|--|--|--|
| Factor                                    | Low                         | Medium                           | High                         | Low | Medium | High |  |  |  |
| TP Removal                                | < 0.2 lb/yr                 | 0.2 to 0.75 lb/yr                | > 0.75 lb/yr                 | 10  | 15     | 25   |  |  |  |
| Capital Cost <sup>1</sup>                 | > \$50k                     | \$25k - \$50k                    | < \$25k                      | 10  | 15     | 25   |  |  |  |
| Waterbody<br>Proximity                    | Not Near<br>Waterbody       | Within 100-ft of<br>Waterbody    | Within 50-ft of<br>Waterbody | 5   | 10     | 20   |  |  |  |
| Implementation<br>Complexity <sup>2</sup> | High                        | Moderate                         | Low                          | 5   | 10     | 20   |  |  |  |
| Public Visibility /<br>Outreach           | Low Potential<br>Visibility | Moderate<br>Potential Visibility | High Potential<br>Visibility | 0   | 5      | 10   |  |  |  |

### Notes:

- 1. Capital cost is based on the high end of the estimate with a contingency factor of 20% applied.
- Implementation complexity is a qualitative indicator based on the following criteria: property ownership, site access, potential for underground utility conflicts, potential for tree removal, potential for traffic impacts, and potential for wetland permitting. Scored based on professional judgement.

|         |                                                 |                                                                                                               |                                                                                                                                                                                                   |               | mated Lo<br>Reduction |                 | Construction | Engineering  |                  |             | Ranking Factors / Scoring |                 |                        |                    |                      |         | Site     |
|---------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|-----------------|--------------|--------------|------------------|-------------|---------------------------|-----------------|------------------------|--------------------|----------------------|---------|----------|
| Area ID | Location                                        | Existing Issues                                                                                               | Proposed Improvements                                                                                                                                                                             | TP<br>(lb/yr) | TN<br>(lb/yr)         | TSS<br>(ton/yr) | Cost<br>(\$) | Cost<br>(\$) | Capital Cost F   | Range       | TP<br>Removal             | Capital<br>Cost | Waterbody<br>Proximity | Imp.<br>Complexity | Public<br>Visibility | Score P | Priority |
| 1       | Turee Pond Boat Launch on<br>Falcon Way         | Eroding parking area near boat launch.                                                                        | Pave boat ramp and parking area and install tree box filter.                                                                                                                                      | 0.22          | 1.64                  | 0.06            | \$65,000     | \$26,000     | \$72,800         | \$109,200   | М                         | L               | н                      | м                  | н                    | 65      | Medium   |
| 2       | Bow Parks and Rec Dept.<br>Building Parking Lot | Eroding s andy slope and runoff discharge from parking lot into Bow Town Pond .                               | Stabilize/armor eroding slope (appx. 2,200 sf), repave parking lot, install series of 3 treebox filters, and improve vegetated buffer.                                                            | 1.50          | 6.50                  | 1.18            | \$195,000    | \$78,000     | \$218,400        | \$327,600   | н                         | L               | н                      | L                  | н                    | 70      | High     |
| 3       | Grappone Toyota/Service<br>Center               | Gully erosion along bank at access point to<br>Turk ey River.                                                 | Stabilize eroding bank (appx. 600 sf) with native vegetation plantings and bio-stabilization techniques.                                                                                          | 1.00          | 2.00                  | 1.10            | \$15,000     | \$6,000      | \$16,800         | \$25,200    | н                         | м               | н                      | н                  | м                    | 85      | High     |
| 4a      |                                                 | Narrow buffer adjacent to Library Pond.                                                                       | Enhance buffer along the shoreline with double row of shrub plantings<br>(appx. 2,000 s f). Stabilize walking path upgradient of narrow buffer<br>with pea gravel.                                | -             | -                     | -               | \$23,000     | \$9,200      | \$25,760         | \$38,640    | L                         | м               | н                      | м                  | м                    | 60      | Medium   |
| 4b      | St. Paul's School                               | Unstabilized bank and narrow buffer adjacent to Library Pond.                                                 | Stabilize appx. 700 sf area using biostabilization techniques.                                                                                                                                    | 0.20          | 0.60                  | 0.40            | \$7,000      | \$2,800      | \$7,840          | \$11,760    | М                         | н               | н                      | н                  | м                    | 85      | High     |
| 4c      |                                                 | Narrow buffer along appx. 100 ft of shoreline receives runoff from paved Rectory Rd.                          | Enhance buffer along the shoreline with double row of shrub plantings (appx. 2,100 s f)                                                                                                           | 0.70          | 1.30                  | 0.80            | \$12,000     | \$4,800      | \$13,440         | \$20,160    | М                         | н               | н                      | М                  | М                    | 75      | High     |
| 4d      |                                                 | An unpaved footpath dis charges directly into<br>southern side of Library Pond.                               | Install waterbars to redirect runoff away from Pond and reduce erosion. Enhance appx. 375 s f buffer area with woody plantings.                                                                   | 1.55          | 4.10                  | 1.73            | \$16,000     | \$6,400      | \$17,920         | \$26,880    | н                         | М               | м                      | н                  | М                    | 75      | High     |
| 5       | Crumpack er Boathouse                           | Eroding dirt road and minimal buffer adjacent to Little Turkey Pond.                                          | Install waterbars to direct runoff away from Pond and reduce erosion.<br>Enhance 2,100 s f buffer with double row of shrubs /trees.                                                               | 0.12          | 0.90                  | 0.0             | \$21,000     | \$8,400      | \$23,520         | \$35,280    | L                         | М               | М                      | М                  | М                    | 50      | Low      |
| 6       | Hampton Inn Rear Parking Lot                    | N/A - opportunistic implementation area.                                                                      | Install appx. 1,000 s f infiltration basin or rain garden in center of the parking lot.                                                                                                           | 0.31          | 2.60                  | 0.04            | \$27,000     | \$10,800     | \$30.240         | \$45,360    | М                         | м               | L                      | L                  | L                    | 40      | Low      |
| 7       | Concord District Court                          | Minimal buffer along Bow Brook. Areas of eros ion observed at culvert.                                        | Develop a 20-ft Stabilize erodin If all listed BMPs a                                                                                                                                             |               |                       |                 |              |              |                  |             |                           |                 | н                      | н                  | М                    | 80      | High     |
| 8       | Concord High School Parking<br>Lot              | N/A - opportunistic implementation area.                                                                      | Install infiltration Parking Iot. • TP load reduc                                                                                                                                                 |               |                       |                 |              |              |                  |             |                           |                 | м                      | L                  | М                    | 60      | Medium   |
| 9       | Footpath Along Interstate-89                    | Runoff from concrete foot bridge enters Little<br>Turk ey Pond.                                               |                                                                                                                                                                                                   |               |                       |                 | • •          | \$44K        | per site)        | 840         | L                         | н               | М                      | L                  | L                    | 50      | Low      |
| 10      | Currier Road Culvert near<br>Whittier Pond      | Areas of erosion adjacent to culvert headwal<br>and road shoulder. Sediment buildup<br>downstream of culvert. | Armor headwall forebay and lined riprap channel downstream of culvert to prevent further erosion.                                                                                                 | -             | -                     | -               | \$13,000     | \$5,200      | •                | \$21,840    | L                         | н               | м                      | L                  | L                    | 50      | Low      |
| 11      | Boutwell Mill Brook                             | Runoff from the roadway and parking area enter Boutwell Mill Brook.                                           | Stabilize side of Farrington Corner Road with riprap. Install treebox filter to collect runoff from unpaved parking area.                                                                         | 0.16          | 1.47                  | 0.03            | \$27,000     | \$10,800     | \$30,240         | \$45,360    | L                         | М               | н                      | L                  | L                    | 50      | Low      |
| 12      | Jewett Road Culvert Over One<br>Stack Brook     | Eros ion of headwall embankment caused by runoff from road.                                                   | Install riprap along headwall and wingwall embank ment areas to limit erosion caused by surface runoff.                                                                                           | -             | -                     | -               | \$5,000      | \$2,000      | \$5,600          | \$8,400     | L                         | н               | н                      | м                  | L                    | 65      | Medium   |
| 13      | Grapevine Road Culvert Over<br>Bela Brook       | Unstabilized area and erosion directly adjacent to Bela Brook from Grapevine Rd.                              | Stabilize existing area with riprap. Create small riprap lined energy dissipation area (110 sf) around existing catch basin.                                                                      | 0.06          | 0.11                  | 0.07            | \$9,000      | \$3,600      | \$10,080         | \$15,120    | L                         | н               | М                      | н                  | L                    | 65      | Medium   |
| 14      | Page Road Culvert Over White<br>Brook           | Roadside erosion of sandy soils on the southern side of Page Road.                                            | Armor area surrounding culvert inlet and outlet, including<br>embankment, to prevent erosion. Establish vegetated buffer along<br>roadway (appx. 150 ft) consisting of shrubs and hearty grasses. | 0.34          | 0.68                  | 0.40            | \$18,000     | \$7,200      | \$20,160         | \$30,240    | М                         | М               | н                      | М                  | L                    | 60      | Medium   |
| 15      | Turk ey River Near Chen Yang<br>Li Restaurant   | Embankment adjacent to Turkey River is getting undercut from parking lot runoff.                              | Stabilize embankment with gabion wall (appx. 10 ft tall by 100 ft long). Enhance's tream buffer with native woody plantings (appx. 2.800 sft.                                                     | -             | -                     | -               | \$86,000     | \$34,400     | <b>\$</b> 96,320 | \$144,480   | L                         | L               | М                      | L                  | L                    | 35      | Low      |
| 16      | Abbot-Downing School                            | N/A - opportunistic implementation area.                                                                      | Armor unpaved footpath with gravel to limit erosion. Direct runoff from<br>upgradient parking area to approx. 300 sfraingarden.                                                                   | 0.20          | 1.68                  | 0.03            | \$22,000     | \$8,800      | \$24,640         | \$36,960    | М                         | М               | М                      | L                  | н                    | 55      | Low      |
|         |                                                 |                                                                                                               | TOTALS                                                                                                                                                                                            | 7.4           | 32.7                  | 6.0             | \$608,000    | \$243,200    | \$680,960 - \$   | \$1,021,440 |                           |                 |                        |                    |                      |         |          |

# **Example BMP Sites**

### AREA 1: Turee Pond Boat Launch and Parking Area

**Location:** Turee Pond Boat Launch

Subwatershed: Turee Pond

Owner: New Hampshire Dept. of Fish and Game Priority: Medium



Photo 1-1: Boat ramp extending into Turee Pond.



Photo 1-2: Concrete block boat ramp undercut.



Photo 1-3: Dirt parking area eroding and washing into pond.

### **Proposed Improvements:**

- Pave parking /boat launch area;
   Install trench drain above boat
   launch to capture runoff
- 2. Install **tree box filter** north of the boat ramp to capture runoff from the trench drain and parking.
- 3. **Regrade undercut** at boat ramp; ensure proper future maintenance

### AREA 2: Bow Parks and Recreation Parking Lot

**Location:** Bow Parks and Recreation Building **Subwatershed**: Turee Pond

Owner: Town of Bow Priority: High



Photo 2-4: Proposed BMP configuration for Bow Parks and Recreation Parking Lot

### **Proposed Improvements:**

- 1. Install **asphalt berm** on south side of parking lot; direct runoff into treebox filters.
- 2. **Re-pave /re-grade parking lot** to eliminate ponding and unwanted flow channels, promoting positive drainage to tree box filters.
- 3. Increase **vegetated buffer** along shoreline areas with a double row of shrub plantings.
- 4. **Stabilize steep slope** with riprap and vegetation
- 5. Install **sediment traps** in existing catch basins.

### **AREA 3: Turkey River Historic Landing**

**Location:** Grappone Toyota Service Center Subwatershed: Turkey River

Owner: Bow Junction Associates Inc. Priority: High



Photo 3-1: Severe erosion adjacent to water access point.



Photo 3-2: Loose stone and sand on slope.



Photo 3-3: Severe erosion adjacent to water access point.

### **Proposed Improvements:**

Stabilize eroding bank with native vegetation / bio-stabilization techniques.

Pedestrian access point to remain.

### AREA 4: St. Paul's School

**Location:** Library Pond **Subwatershed**: Turkey River

Owner: St. Paul's School Priority: Varies (See Table 15)



### **Proposed Improvements:**

**4a: Enhance buffers** with native trees and shrubs

**4b: Stabilize eroding banks** using a combination of biostabilization and stone stabilization as needed.

**4c: Re-grade dirt pathway** to promote drainage of runoff away from Library Pond. Improve buffer with native plantings.

**4d:** Install **2 water bars** on dirt footpath descending hill towards site 4d. Stabilize eroding bank and improve buffer with native plantings.

#### AREA 7: Concord District Court

**Location:** Grassed Fields North of Court House **Subwatershed**: Bow Brook

Owner: State of New Hampshire Priority: High



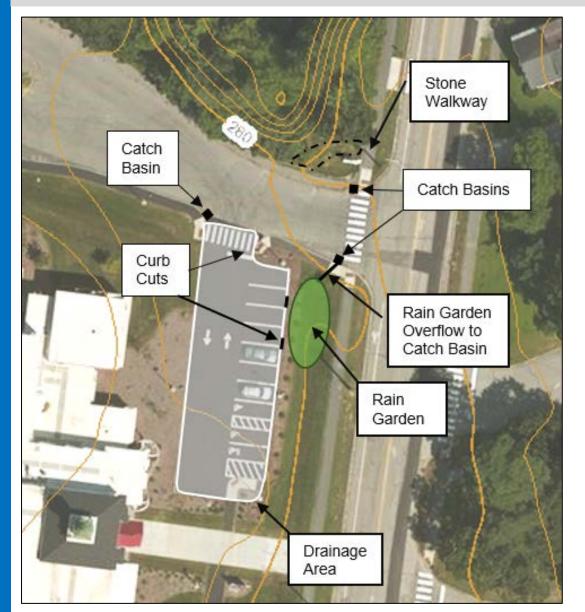
Photo 7-1: Western portion of Bow Brook.



Photo 7-2: Edge of roadway erosion channel.



Photo 7-3: Eastern portion of Bow Brook


### **Proposed Improvements:**

- 1. Develop **20-ft "no-mow" zone** along 1000 feet of Bow Brook to allow both herbaceous and woody vegetation to grow, stabilizing the bank and increasing attenuation of stormwater pollutants
- 2. Stabilize roadway erosion with riprap

#### **AREA 16: Abbot-Downing School**

**Location:** 152 South Street, Concord, NH **Subwatershed**: Bow Brook


Owner: City of Concord PRIORITY: Low



### **Proposed Improvements:**

- 1. **Armor the unpaved footpath** down to the stream with gravel to limit erosion.
- 2. Direct runoff from parking area to a **rain garden** (approx. 300 sf) by installing curb cuts. Connect underdrains in the rain garden to the catch basin at corner of South Street / school entrance.

## **Culvert Improvements**



Why did the turkey cross the culvert?

Because it had full aquatic organism passage compatibility.





### **Stream Crossing Structure Improvement Prioritization Metrics**

| Priority | Structure Condition | Aquatic Organism Passage<br>Compatibility | Hydraulic Vulnerability      |                             |
|----------|---------------------|-------------------------------------------|------------------------------|-----------------------------|
| High     | Poor condition      | No passage                                | Fully or mostly incompatible | Overtops at < 25-yr storm   |
| Medium   | Fair condition      | Reduced passage                           | Partially compatible         | Overtops at 50-100-yr storm |
| Low      | Good condition      | Full passage                              | Fully or mostly compatible   | Overtops at >100-yr storm   |

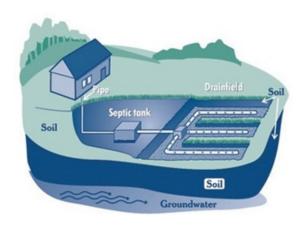








#### **Sub-Watersheds** CONCORD Stream Crossings Map HOPKINTON **Turkey River Watershed** Legend Whittier Pond Stream Crossing Turkey Pond √ Stream, River Lake, Pond, Reservoir [\_\_\_\_] Town Boundaries SubWatershed Ash Brook Turkey PEMBROKE Bela Brook Pond Boutwell Mill Brook Bow Brook One Stack Brook Turee Brook Turee Pond Turkey Pond/ Little Turkey Pond **PEMBROKE** Turkey River 4515 Bow Town Pond **UPPER** MERRIMACK WATERSHED **ASSOCIATION DUNBARTON** BOWPrepared by: WEARE Comprehensive Environmental Incorporated


### **Culvert Prioritization Matrix** (exerpt)

| Subwatershed  | SADES<br>ID | Town      | Road Name              | Structure<br>Condition | AOP<br>Compatibility | Geomorphic<br>Compatibility | Hydraulic<br>Vulnerability | SITE<br>PRIORITY |
|---------------|-------------|-----------|------------------------|------------------------|----------------------|-----------------------------|----------------------------|------------------|
|               | 233         | Concord   | Hopkinton Rd           | Poor                   | Reduced Passage      | no score                    | no score                   | HIGH             |
|               | 1336        | Concord   | Shenondoah Drive       | Good                   | Full Passage         | Mostly Incompatible         | no score                   | MEDIUM           |
| Ash Brook     | 4548        | Concord   | District 5 Road        | Good                   | Reduced Passage      | Mostly Compatible           | High                       | MEDIUM           |
|               | 4549        | Concord   | District 5 Road        | Good                   | Reduced Passage      | no score                    | no score                   | MEDIUM           |
|               | 4547        | Concord   | Currier Road           | Good                   | Full Passage         | Partially Compatible        | no score                   | LOW              |
|               | 4494        | Dunbarton | Grapevine Drive        | Good                   | No Passage           | Partially Compatible        | High                       | HIGH             |
|               | 4495        | Dunbarton | Guinea Road            | Good                   | Reduced Passage      | Partially Compatible        | High                       | MEDIUM           |
|               | 4520        | Dunbarton | Grapevine Road         | Good                   | Reduced Passage      | no score                    | no score                   | MEDIUM           |
|               | 10627       | Bow       | Page Road              | Fair                   | Reduced Passage      | Partially Compatible        | Medium                     | MEDIUM           |
|               | 16678       | Dunbarton | Stone Rd.              | Fair                   | Reduced Passage      | Mostly Incompatible         | no score                   | MEDIUM           |
| Bela Brook    | 4521        | Dunbarton | Grapevine Road         | Good                   | No Passage           | Fully Compatible            | Medium                     | MEDIUM           |
| Dela Brook    | 4522        | Dunbarton | Grapevine Road         | Good                   | Full Passage         | Mostly Compatible           | Medium                     | MEDIUM           |
|               | 4523        | Dunbarton | Zachary Drive          | Good                   | Reduced Passage      | no score                    | no score                   | MEDIUM           |
|               | 4524        | Dunbarton | Grapevine Road         | Good                   | Reduced Passage      | Mostly Compatible           | High                       | MEDIUM           |
|               | 4505        | Concord   | Birchdale Road         | Good                   | Full Passage         | no score                    | no score                   | LOW              |
|               | 4509        | Concord   | Hookset Tpk            | Good                   | Full Passage         | no score                    | no score                   | LOW              |
|               | 4536        | Concord   | Clinton Street         | Good                   | Full Passage         | no score                    | no score                   | LOW              |
|               | 2807        | Hopkinton | Hopkinton Rd           | Fair                   | No Passage           | no score                    | no score                   | HIGH             |
|               | 2808        | Hopkinton | Hopkinton Rd           | Poor                   | no score             | no score                    | no score                   | HIGH             |
|               | 4491        | Hopkinton | Upper Straw Road       | Good                   | No Passage           | Mostly Compatible           | High                       | HIGH             |
|               | 4501        | Hopkinton | Branch Londonderry Tpk | Poor                   | Reduced Passage      | no score                    | no score                   | HIGH             |
| Boutwell Mill | 4546        | Hopkinton | Crowell Road           | Good                   | No Passage           | no score                    | no score                   | MEDIUM           |
| Brook         | 4552        | Hopkinton | Farrington Corner Road | Good                   | Reduced Passage      | Mostly Compatible           | High                       | MEDIUM           |
|               | 4500        | Hopkinton | Branch Londonderry Tpk | Good                   | No Passage           | no score                    | no score                   | MEDIUM           |
|               | 4499        | Hopkinton | Stickney Hill Road     | Good                   | Reduced Passage      | Fully Compatible            | Low                        | LOW              |
|               | 4502        | Hopkinton | Branch Londonderry Tpk | Good                   | Full Passage         | no score                    | no score                   | LOW              |
|               | 4508        | Bow       | Clinton Street         | Good                   | Full Passage         | Mostly Compatible           | no score                   | LOW              |

### **Septic System Risk Analysis**

Table 18. Septic System Analysis for the Turkey River Watershed

|                        |                                                       | System<br>cteristics           | Environmental Conditions of Septic Systems |                                                   |                         |                                                              |  |  |  |  |  |  |  |  |
|------------------------|-------------------------------------------------------|--------------------------------|--------------------------------------------|---------------------------------------------------|-------------------------|--------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Subwatershed           | Total<br>Number of<br>Parcels on<br>Septic<br>Systems | Septic Density<br>(tanks/acre) | Within 200<br>Feet of a<br>Waterbody       | With Very<br>Limited Soil<br>Absorption<br>Rating | With Both<br>Conditions | With Both<br>Conditions<br>and in a 1%<br>FEMA Flood<br>Zone |  |  |  |  |  |  |  |  |
| Turkey River           | 322                                                   | 0.08                           | 14                                         | 313                                               | 14                      | 0                                                            |  |  |  |  |  |  |  |  |
| Bow Brook              | 37                                                    | 0.03                           | 7                                          | 37                                                | 7                       | 0                                                            |  |  |  |  |  |  |  |  |
| Turkey Ponds           | 111                                                   | 0.05                           | 17                                         | 111                                               | 17                      | 2                                                            |  |  |  |  |  |  |  |  |
| Ash Brook              | 127                                                   | 0.05                           | 11                                         | 124                                               | 9                       | 0                                                            |  |  |  |  |  |  |  |  |
| Turee Brook            | 548                                                   | 0.15                           | 32                                         | 543                                               | 31                      | 0                                                            |  |  |  |  |  |  |  |  |
| Turee Pond             | 331                                                   | 0.19                           | 23                                         | 327                                               | 23                      | 0                                                            |  |  |  |  |  |  |  |  |
| Bela Brook             | 359                                                   | 0.10                           | 22                                         | 354                                               | 21                      | 4                                                            |  |  |  |  |  |  |  |  |
| Boutwell Mill<br>Brook | 277                                                   | 0.10                           | 21                                         | 274                                               | 20                      | 2                                                            |  |  |  |  |  |  |  |  |
| One Stack<br>Brook     | 165                                                   | 0.06                           | 4                                          | 165                                               | 4                       | 2                                                            |  |  |  |  |  |  |  |  |
| Total                  | 2,277                                                 | 0.09 (Avg)                     | 151                                        | 2,248                                             | 146                     | 10                                                           |  |  |  |  |  |  |  |  |



#### Septic System Risk Analysis for the Turkey River Watershed

#### Legend

Parcels with Septic Systems in Limited Soils, 1% FEMA Flood Zone, and 200' Buffer

Parcels with Septic Systems in Limited Soils and 200' Buffer

Parcels with Septic Systems in 200' Buffer

Other Parcels with Septic Systems

Parcels on Sewer

Other Parcels

Sub Watersheds

√√u Stream, River

Lake or Pond

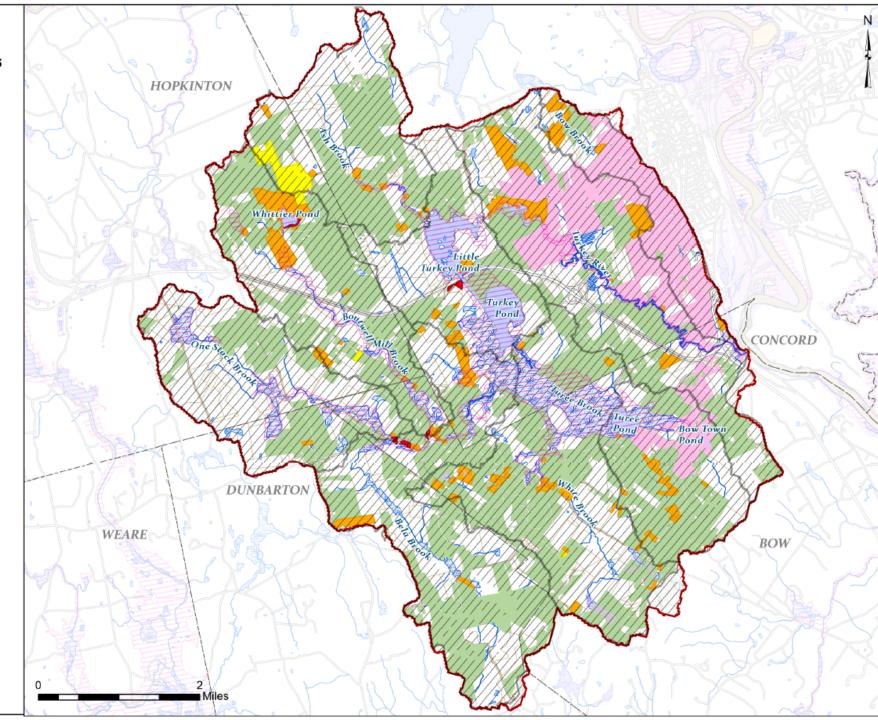
Wetland

Watershed Boundary

[\_\_\_] Town Boundaries

Septic Tank Absorption Rating

/// Very limited


#### FEMA Flood Hazard

1% Annual Chance Flood Hazard

Note: Selected Areas are within 200 ft. of surface water or wetlands, in areas of 1% FEMA flood hazard, and/or areas where soils have a Very Limited Absorption Rating for septic systems.



Data Sources: GRANIT, CNHRPC, NRCS



### Non-structural BMPs



Public Information and Education



**Land Conservation** 



**Regulatory Tools** 



**Institutional Practices** 

### **Public Information and Education**



Watershed Steward Program (New Hampshire Rivers Council program)



UMWA will work with the Soak up the Rain program to identify specific infiltration projects in the Turkey River watershed.



UMWA will work with the Green SnowPro program to provide information to commercial property owners about sensible salt application.



Low Impact Development (LID) Techniques for Homeowners workshop



Coordination meetings with DPWs, NH Stream Crossing Initiative, NHDOT



## Coordinate with watershed municipalities and conservation groups to prioritize:

- > land conservation goals
- > target parcels



Silk Farm Wildlife Sanctuary, Concord

### **Conservation Lands Turkey River Watershed** HOPKINTON Legend Conservation Land Whittier-Pond Conservation Land without Formal Easement Subwatershed: Ash Brook Bela Brook Boutwell Mill Brook Bow Brook One Stack Brook CONCORD Turee Brook Turee Pond Turkey Pond/ Little Turkey Pond Turkey River حسر Stream, River Bow Town Lake or Pond Wetland Watershed Boundary [\_\_\_] Town Boundaries DUNBARTON WEARE BOW Comprehensive Environmental Incorporated Data Sources: GRANIT, CNHRPC, NRCS

# **Regulatory Tools**

- Strengthen municipal stormwater regulations
- Establish town regulations to enable/promote installation of alternative wastewater treatment systems based on proximity to a waterbody (i.e., 200 meters) for new development, redevelopment and replacement of failed systems.
- Develop landscaping fertilizer ordinances









• Increase frequency of catch basin cleaning (2 additional cleanings per year)



 Develop Enhanced Street/Pavement Cleaning Programs



• Develop Enhanced Organic Waste and Leaf Litter Collection Programs



### **Non-structural BMPs**

BMP Priority Ranking Factors\*

L = Low M = Medium H = High

\* For cost factors, lower cost = higher priority

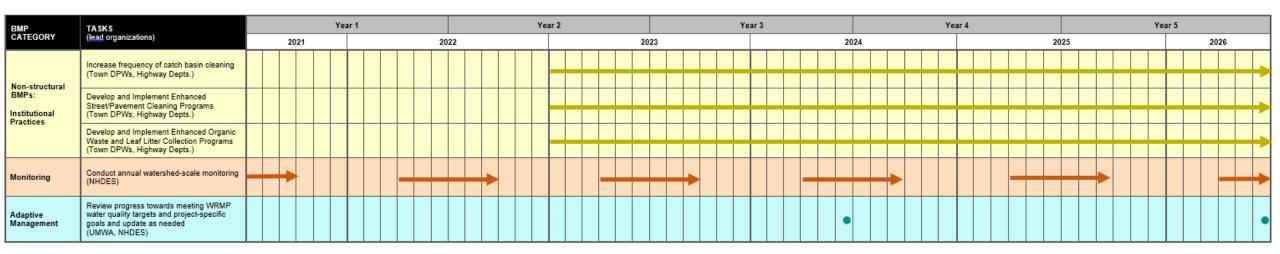
| Non-structural<br>BMP Category   | BMP Description                                                                                                                                                                                                                  | Relevant Authorities                                                              | How BMP Achieves Pollutant Load Reductions or Other WRMP Goals                                                                                                                                                       | Pollutant Load<br>Reduction<br>Potential | Anticipated<br>Costs | Feasibility | PRIORITY |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|-------------|----------|
|                                  | Watershed Steward <u>Program™</u> property assessments and related outreach                                                                                                                                                      | UMWA, NHRC, watershed homeowners                                                  | Reduces pollutant (P,N, and bacteria) loading by improved land management, such as reduced fertilizer use, improved septic system maintenance, stabilization of eroding areas, pet waste management, etc.            | М                                        | н                    | н           | High     |
| Public Information and Education | Meetings with town DPW staff and staff of NHDOT and the NHSCI to coordinate WRMP implementation                                                                                                                                  | UMWA, town DPWs, NHDOT, NHDES                                                     | Reduces pollutant (P,N, and bacteria) loading by improving coordination with agencies that are critical to BMP implementation. Improves schedule coordination, BMP prioritization, and BMP implementation logistics. | М                                        | н                    | н           | High     |
|                                  | Updates to the UMWA website to update public on the Turkey<br>River WRMP and implementation efforts                                                                                                                              | UMWA                                                                              | Serves as the primary clearinghouse for web-based information on progress to develop, implement, and update the WRMP.                                                                                                | L                                        | н                    | н           | Medium   |
|                                  | Conduct LID for Homeowners workshop                                                                                                                                                                                              | UMWA, watershed homeowners                                                        | Reduces pollutant (P and N) loading by educating homeowners and promoting adoption of LID practices such as raingardens, vegetated buffers, etc.                                                                     | L                                        | н                    | н           | Medium   |
| Land Conservation                | Coordinate with local conservation groups to prioritize land conservation goals/target parcels. (land trusts, town planning/conservation staff, CNHRPC, UMWA, NHDES)                                                             | UMWA, CNHRPC, town planning staff, and other local land conservation orgs.        | Prevents increases in pollutant loading associated with land development.                                                                                                                                            | н                                        | н                    | н           | High     |
|                                  | Strengthen town stormwater regulations based on SWA model standards                                                                                                                                                              | Concord, Bow, Dunbarton, and Hopkinton<br>Planning Boards and Boards of Selectmen | Reduces future increases in pollutant (P, N, and bacteria) loading associated with land development by improving regulatory performance standards for new development and redevelopment projects.                    | н                                        | н                    | М           | High     |
| Regulatory Tools                 | Develop landscaping fertilizer ordinances                                                                                                                                                                                        | Concord, Bow, Dunbarton, and Hopkinton<br>Planning Boards and Boards of Selectmen | Reduces P and N loading from landscaping fertilizer applications.                                                                                                                                                    | н                                        | L-M                  | М           | Medium   |
|                                  | Establish town regulations to enable/promote installation of alternative wastewater treatment systems based on proximity to a waterbody (i.e., 200 meters) for new development, redevelopment and replacement of failed systems. | Concord, Bow, Dunbarton, and Hopkinton<br>Planning Boards and Boards of Selectmen | Reduces nutrient and bacteria loading from wastewater sources.                                                                                                                                                       | н                                        | н                    | М           | High     |
|                                  | Increase frequency of catch basin cleaning (2 additional cleanings per year)                                                                                                                                                     | Town DPW/Highway Depts., NHDOT                                                    |                                                                                                                                                                                                                      | М                                        | L                    | М           | Medium   |
| Institutional<br>Practices       | Develop Enhanced Street/Pavement Cleaning Programs                                                                                                                                                                               | Town DPW/Highway Depts., NHDOT                                                    | Reduces P and N load as calculated according to NH Small MS4 General Permit formulas for each practice.                                                                                                              | М                                        | L-M                  | М           | Medium   |
|                                  | Develop Enhanced Organic Waste and Leaf Litter Collection<br>Programs                                                                                                                                                            | Town DPW/Highway Depts., NHDOT                                                    |                                                                                                                                                                                                                      | М                                        | L-M                  | М           | Medium   |



## **Schedule and Milestones**








- 5-year planning/implementation period: Sept. 2021 Sept. 2026
- Schedule / milestones organized according to:
  - Structural Stormwater BMPs
  - Non-structural BMPs
    - > Public Information and Education
    - Land Conservation
    - Regulatory Tools
    - > Institutional Practices
  - Monitoring
  - Adaptive Management

### **Next Steps: Schedule and Milestones**

| BMP TASKS                                       |                                                                                                                                                                                                                                                 | Year 1 |      |                |          |   |   |                | Year 2 |         |           |   |   |   |    |      | Year 3 |  |   |   |       |  |      |   | Year 4 |   |   |  |   |             |      |        |         |   |  |   | 2026 |   |   |   |          |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|----------------|----------|---|---|----------------|--------|---------|-----------|---|---|---|----|------|--------|--|---|---|-------|--|------|---|--------|---|---|--|---|-------------|------|--------|---------|---|--|---|------|---|---|---|----------|
| CATEGORY                                        | (lead organizations)                                                                                                                                                                                                                            | L      | 2021 |                |          | 2 |   |                |        | 2022 20 |           |   |   |   | 20 | 2023 |        |  |   |   |       |  | 2024 |   |        |   |   |  | , |             | 2025 |        |         |   |  |   |      |   |   |   |          |
| -                                               | Select priority sites for structural stormwater<br>BMPs described in Section 4.1<br>(UMWA, NHDES)                                                                                                                                               |        |      | $\blacksquare$ |          |   | • |                |        |         |           |   |   |   |    |      |        |  |   |   |       |  |      |   |        |   |   |  |   |             |      |        |         |   |  |   |      |   |   |   |          |
|                                                 | Prepare application for NHDES Section 319<br>NPS Grant for final design/construction of<br>priority BMP sites<br>(UMWA, NHDES)                                                                                                                  |        |      |                |          |   |   |                |        | +       | +         |   | * |   |    |      |        |  |   |   |       |  |      |   |        |   |   |  |   |             |      |        |         |   |  |   |      |   |   |   |          |
|                                                 | Prepare priority BMP sites final designs and permitting (pending grant funding) (UMWA, NHDES)                                                                                                                                                   |        |      |                |          |   |   |                |        |         |           |   |   |   |    |      |        |  |   | - | -     |  |      |   |        |   |   |  |   |             |      |        |         |   |  |   |      |   |   |   |          |
| Structural<br>Stormwater<br>BMPs                | Construct priority BMP Sites (UMWA, contractor)                                                                                                                                                                                                 |        |      |                |          |   |   |                |        |         |           |   |   |   |    |      |        |  |   |   | $\pm$ |  |      |   | •      |   |   |  |   |             |      |        |         |   |  |   |      |   |   |   |          |
|                                                 | Prepare grant application for design and construction of additional BMP sites (UMWA, NHDES)                                                                                                                                                     |        |      |                |          |   |   |                |        |         |           |   |   |   |    |      |        |  |   |   |       |  |      |   |        |   |   |  |   | <b>&gt;</b> |      |        |         |   |  |   |      |   |   |   |          |
|                                                 | Obtain grant funding for additional BMP<br>sites/construct BMPs<br>(UMWA, NHDES)                                                                                                                                                                |        |      |                |          |   |   |                |        |         |           |   |   |   |    |      |        |  |   |   |       |  |      |   |        |   |   |  |   |             |      |        |         |   |  | • |      |   |   |   |          |
|                                                 | Meet with NH Stream Crossing Initiative<br>staff to review WRMP culvert improvement<br>prioritization and identify next steps<br>(UMWA, NHDES, NHDOT)                                                                                           |        |      |                |          |   |   | $\blacksquare$ |        |         | +         |   |   |   |    |      |        |  |   |   |       |  |      |   |        |   |   |  |   |             |      |        | $\perp$ |   |  |   | +    |   |   |   | +        |
|                                                 | Watershed Steward Program property<br>assessments and related outreach<br>(NHRC,UMWA, homeowners)                                                                                                                                               |        | Ţ    | П              | _        |   |   | $\blacksquare$ | 1      |         | ļ         | П | 1 | Ţ |    | _    |        |  | _ | П | 1     |  |      | ļ | П      |   | ļ |  | П |             |      | $\Box$ | Ţ       |   |  |   | Ţ    |   |   |   | <b>+</b> |
| Non-structural<br>BMPs:                         | Meetings with NHDOT and town staff to coordinate WRMP implementation (UMWA, town DPWs, NHDOT)                                                                                                                                                   |        | +    | $\frac{++}{+}$ | +        | + |   |                |        |         | $\dagger$ |   |   |   |    |      |        |  |   |   |       |  |      |   |        | + |   |  |   |             |      |        |         |   |  |   |      |   |   |   |          |
| Public<br>Information and<br>Education          | Updates to UMWA website to announce news related to the Turkey River WRMP and implementation efforts (UMWA)                                                                                                                                     |        |      |                | <u> </u> |   |   |                |        |         |           |   |   |   |    |      |        |  |   |   |       |  |      |   |        |   |   |  |   |             |      |        |         |   |  |   |      |   |   |   |          |
|                                                 | Conduct LID for Homeowners workshop<br>(UMWA)                                                                                                                                                                                                   |        |      | П              |          |   |   |                | •      |         |           |   |   |   |    |      |        |  |   |   |       |  |      |   |        |   |   |  |   |             |      |        |         |   |  |   |      |   |   |   |          |
| Non-structural<br>BMPs:<br>Land<br>Conservation | Coordinate with conservation groups to prioritize land conservation goals/target parcels (UMWA, CNHRPC, local land trusts)                                                                                                                      |        |      |                |          |   |   |                |        |         | +         |   |   |   |    |      |        |  |   |   |       |  |      |   |        |   |   |  |   |             |      |        |         |   |  |   |      |   |   |   |          |
|                                                 | Establish town regulations to<br>enable/promote installation of alternative<br>wastewater treatment systems based on<br>proximity to a waterbody (i.e., 200 meters)<br>for new development, redevelopment and<br>replacement of failed systems. |        |      |                |          |   |   |                |        |         | +         |   | + |   |    |      |        |  |   |   |       |  |      | + |        |   |   |  |   |             |      |        | ļ       | • |  |   |      |   |   |   |          |
| Non-structural<br>BMPs:<br>Regulatory Tools     | (Town Planning Boards)                                                                                                                                                                                                                          |        | +    | +              | +        |   |   |                |        | ++      | +         |   | + | + |    |      |        |  |   |   | +     |  |      |   | H      | + | + |  |   |             |      |        | +       | H |  |   |      | H | + | H |          |
|                                                 | Develop landscaping fertilizer ordinances<br>(Town Planning Boards)                                                                                                                                                                             |        |      |                | -        |   |   |                |        |         |           |   |   |   |    |      |        |  |   |   | +     |  |      |   |        |   |   |  |   |             |      |        |         |   |  |   |      |   |   |   |          |
|                                                 | Develop septic system pumping ordinances requiring homeowners to pump their septic                                                                                                                                                              |        |      |                |          |   |   |                |        |         |           |   |   |   |    |      |        |  |   |   |       |  |      |   |        |   |   |  |   |             |      |        |         |   |  |   |      |   |   |   |          |
|                                                 | systems every 3-5 years.<br>(Town Boards of Health)                                                                                                                                                                                             |        |      |                |          |   |   |                |        |         |           |   |   |   |    |      |        |  |   |   |       |  |      |   |        |   |   |  |   |             |      |        |         |   |  |   |      |   |   |   |          |

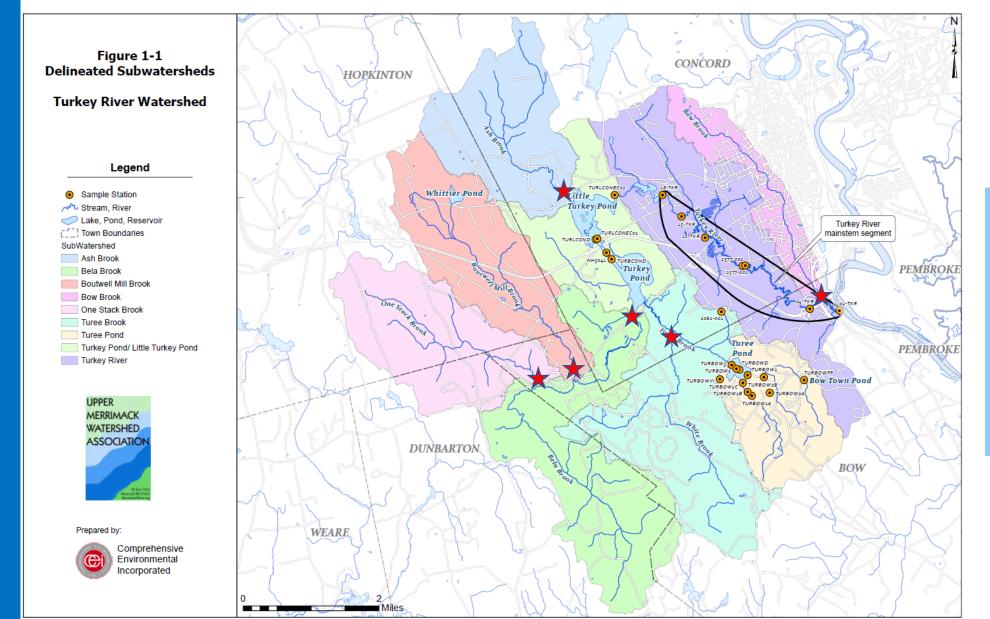
### **Next Steps: Schedule and Milestones**







### **EVALUATION CRITERIA**


- Water Quality Target: TP concentration of 0.027 mg/L for the Turkey River mainstem
- TMDL Criteria: Update the WRMP to reflect TMDL criteria <u>if established in the future</u>.
- Project-Specific Indicators (e.g., # of BMPs constructed, acres of new conservation land)

## **Monitoring**



- 1. Continue monitoring at **4 existing stations in the Turkey River mainstem.** These stations should continue to provide basis **for comparison to the TP goal** (27 ug/L).
- 2. Median TP in Turkey River mainstem (30.5 ug/L) is based on very limited data. **More frequent TP monitoring** (e.g., annual summer monitoring) will strengthen the basis for future water quality goal setting and/or adaptive management.
- 3. The 6 river monitoring stations upstream of the mainstem are **not well distributed in watershed** all within tributaries to Turee Pond.

Monitoring stations should be established (★) at the downstream reach of Ash Brook,
 Boutwell Mill Brook, One Stack Brook, Bela Brook, White Brook, and Bow Brook.



### **Tributary data will:**

- 1. help **characterize nutrient dynamics** in the watershed and
- 2. track tributary response to BMPs and future land development

## **Adaptive Management**

• If, after 5 years of WBPA implementation, direct measurements and indirect indicators do not show progress towards meeting water quality targets, management measures and water quality targets should be revisited and modified accordingly.



## NEXT STEPS...

- Review/finalize the WRMP
- BMP implementation for high priority sites
  - > Funding select top sites for grant applications
- Coordination meetings
  - > culvert priorities
  - > structural BMPs
  - **→** land protection, etc.
- Public outreach
  - > UMWA website updates
  - **➤ Watershed Steward Program**



# Questions?

